Welcome to Solar Industry



Annual and interannual behavior of solar ultraviolet irradiance revealed by broadband measurements

This research examines the behavior of ground-level solar UV radiation as measured by eight broadband meters in the continental United States during the period from late 1994 to late 1998. The goal is to define the variability that occurs in UV irradiance over time scales ranging from one to several years. The monthly integrated irradiances, from latitude 32N to 47N, contain large annual cycles and latitudinal gradients which depend on season. Seven of the eight sites show a maximum in July, a behavior related to proximity to the summer solstice, with modifications associated with the annual cycle in column ozone. A large interannual variability in monthly integrated irradiance appears over the 4 year period studied. A comparison of corresponding months during different years shows differences in irradiance of 20% or more in one-third of the cases analyzed. When the solar zenith angle (SZA) is held fixed in the range 60-65, a substantial annual cycle in UV irradiance remains where the maximum monthly mean irradiance is 1.4-1.9 times the minimum, depending on location. Furthermore, the annual cycle at fixed SZA is not in phase with the normal seasonal cycle. Maximum irradiances at fixed SZA tend to occur in the October to December period, while minima cluster in April through July. The annual cycle in ozone, with maximum column values in spring and minima in autumn, explains the general character of the fixed-SZA data, although changes in cloudiness are significant contributors to interannual variability.

Abbreviations: CUCF, Central UV Calibration Facility; DU, Dobson unit; SRF, spectral response function; SZA, solar zenith angle; USDA, United States Department of Agriculture; YES, Yankee Environmental Systems. This research examines the behavior of ground-level solar UV radiation as measured by eight broadband meters in the continental United States during the period from late 1994 to late 1998. The goal is to define the variability that occurs in UV irradiance over time scales ranging from one to several years. The monthly integrated irradiances, from latitude 32N to 47N, contain large annual cycles and latitudinal gradients which depend on season. Seven of the eight sites show a maximum in July, a behavior related to proximity to the summer solstice, with modifications associated with the annual cycle in column ozone. A large interannual variability in monthly integrated irradiance appears over the 4 year period studied. A comparison of corresponding months during different years shows differences in irradiance of 20% or more in one-third of the cases analyzed. When the solar zenith angle (SZA) is held fixed in the range 60-65, a substantial annual cycle in UV irradiance remains where the maximum monthly mean irradiance is 1.4-1.9 times the minimum, depending on location. Furthermore, the annual cycle at fixed SZA is not in phase with the normal seasonal cycle. Maximum irradiances at fixed SZA tend to occur in the October to December period, while minima cluster in April through July. The annual cycle in ozone, with maximum column values in spring and minima in autumn, explains the general character of the fixed-SZA data, although changes in cloudiness are significant contributors to interannual variability.

Abbreviations: CUCF, Central UV Calibration Facility; DU, Dobson unit; SRF, spectral response function; SZA, solar zenith angle; USDA, United States Department of Agriculture; YES, Yankee Environmental Systems.